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LETTER TO THE EDITOR 

Influence of fluctuations on the magnetisation of cubic 
ferromagnets 
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t Institute for Physical Science and Technology, University of Maryland, College Park, 
Maryland 20742, USA 
$ Instituto de Fisica, Universidade Federal do Rio Grande do SUI, Caixa Postal 15051, 
91500 Porto Alegre, RS, Brazil 

Received 7 June 1989 

Abstract. Renormalisation-group calculations to first order in E ,  in 4 - E dimensions, for the 
three-state Potts model are used to study the effects of fluctuations on the phase transition 
of cubic ferromagnets either in a diagonal or a slightly off-diagonal magnetic field. It is found 
that these compete with the effects of sixth-order anisotropy leaving a discontinuity for the 
magnetisation of about the same magnitude as that found in 1976 by Mukamel, Fisher and 
Domany. Our results may be relevant to the phase transition in PrAlz and DyAlz when the 
temperature is not too low. 

The phase transition in cubic ferromagnets with three easy axes, [ 1001, [0 101 and [00 11, 
such as Fe, NdA1, and DyA1, (Carr 1966, Purwins et a1 1974, Bak 1974) in a diagonal 
magnetic field HI( [l 1 11, became of considerable interest some time ago (Mukamel et a1 
1976, Barbara et a1 1978) with the proposal of Mukamel et al(1976) that these systems 
are physical realisations of the three-state Potts model (Potts 1952). There has been a 
prolonged controversy as to whether the model in three dimensions has a first-order or 
a continuous transition and there is now strong evidence in support of a first-order 
transition (Wu 1982). Except for Fe (Hathaway and Prinz 1981), the experimental and 
theoretical results on cubic ferromagnets are not that definite. 

Mean-field calculations (Mukamel et a1 1976), which hold apparently for all tem- 
peratures T ,  yield a discontinuity in the diagonal magnetisation AM,, of only 3.666% of 
the T = 0 value of M O  = IM/, the magnitude of the magnetisation. Experiments on PrAl, 
(Purwins et al1974) show a discontinuity of about this size, whereas the discontinuity 
for NdA12, if any, is expected to be very small (Bak 1974). 

Sixth-order anisotropy is important in rare-earth systems, and it has been argued 
that this accounts for the larger discontinuities in DyAl, at low T (Barbara et a1 1978). 
It has also been suggested by Barbara et a1 (1978) and shown explicitly by Cullen and 
Callen (1984, 1985) that for cubic ferromagnets with fourth- and sixth-order anisotropy 
the latter could increase the off-diagonal angle 0, where a tricritical point is expected to 
appear following the increase of the discontinuity in the magnetisation. Although the 
experiments on DyA1, at 4.2 K yield a result in the interval lo" < 6 T  < 22.9", much 
larger than the OT L- 1.68" of Mukamel et a1 (1976), data indicate that 0 T  < 10" already 
at 20 K or higher and such small values are probably difficult to detect. 
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Thus, except for DyAl, at low T (<20 K), the experimental evidence suggests that 
the phase transition in cubic ferromagnets in a diagonal magnetic field is only weakly 
first order. Fluctuation corrections near a second-order phase transition (Wilson and 
Kogut 1974, Fisher 1974) may then be relevant, and in this Letter we show that renorm- 
alisation-group (RG) calculations also yield off-diagonal tricritical and critical angles that 
vary in proportion to the discontinuity in the magnetisation in a non-trivial way. A 
classical mean-field calulation that includes sixth-order anisotropy near a second-order 
phase transition is then shown to yield results that compete with the fluctuation cor- 
rections. 

A cubic ferromagnet in an external magnetic field can be described by the Landau- 
Ginzburg-Wilson Hamiltonian 

d3x { i [ r o q 2  + (V+)2] + u ~ ( I , ! J ~ ) ~  + u o ( V ;  + q," + V : )  - h * +} (1) 

for a continuous three-component field +(x) = (y,, Vy ,  VZ). The reduced magnetic field 
h = mH/kBT ,  m being the magnetic moment and H the applied magnetic field. Stability 
requires that uo + uo > 0 and, in order to have the three easy axes [ loo] ,  [OlO] and 
[OOl] we follow Mukamel et a1 (1976) and take uo < 0. For our purposes we let h = 
ho(l + 6 , l  + 6,1 - 2 6 ) / g 3  and assume 6 4. 

The orthogonal transformation to the new field $(x) = (Go, G1, G 2 )  

and the separation Go = $o + M O ,  where MO = ($o) is the thermal average of q0 and $o 
is its fluctuating part, yields an intermediate Hamiltonian X with linear terms in 
4: - - h1Gl, where 

Then (4,) = 0 yields M O  = M o ( h o ) .  
We follow Mukamel et aZ(l976) and fix T < T,(O), the critical temperature in zero 

field ho, and vary ho. For large ho %- ha, the reduced anisotropy field (81u01M%), q0 is non- 
critical and may be replaced by MO while, by symmetry ( G I )  = O(6) and ( G 2 )  = 0. The 
part of X which does not contain & becomes the effective Hamiltonian 

xeff= J d3x{i[r1#: + r2$;  + ( w > ~ I +  wq; - 3w2ql$: + ul(cp: + G:)* 

+ u z w  + $:$:I - hlG11 (4) 

for the three-state Potts model with symmetry-breaking terms which has been previously 
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applied to the trigonal-pseudo-tetragonal phase transition in SrTiO, (Barbosa and 
Theumann 1988,1989). The parameters 

r I  = r + g  r 2 = r - g  

w1 = w + 3g, 

U1 = U - ( y  + $2)  

W f  = w - g, ( 5 )  
u , + u 2 = u + y - 5 2  

are related to those of the cubic system through 

g, = - 2 d 2 ) u o / M o S  

= IuOl(hO/hA + $1 (6e) 

(6f 1 y =  -U 1 
3 U 0 1 6  

2 = 21uo/s. ( 6 d  

As ho/hA is reduced either Q1 or $ 2  start to order and the mean-field phase diagram 
(Blankschtein and Aharony 1980, Fontanari and Theumann 1986) may then be used to 
locate the critical and tricritical points. 

Renormalisation-group equations for the three-state Potts model with symmetry- 
breaking perturbations in d = 4 - E dimensions have been derived and applied in a 
different context (Barbosa and Theumann 1988,1989). They will now be used to obtain 
the fluctuation corrections to the discontinuity in the magnetisation. In conformity with 
Mukamel er a1 (1976), we take u0/u0 small so that 0 < w2/u 4 1 in the RG equations 
(Blankschtein and Aharony 1980). 

Since by (3b )  we have hl = 0 ( 6 ) ,  we consider the ordering of the component q1 
when 6+ 0- so that r1  < r2 in ( 5 ) .  Writing G1 = and 
42 are the fluctuating parts in which MI = (@,), we calculate the latter from the singular 
part of the free-energy density (Barbosa and Theumann 1989). However, in contrast to 
that work, which is restricted to the critical point in afinite field hl, we now need M1 on 
the phase boundary where Q1 orders at hl = 0 (Mukamel et a1 1976, Blankschtein and 
Aharony 1980). A standard calculation yields 

+ M1 and G 2  = $ 2 ,  where 

AM1 = MI = - ( w / ~ u ) ( ~ w ~ / ~ u ) - ' / ~ .  (7) 

When combined with (6) we get an explicit dependence on the parameters for the cubic 
systems in terms of MO and ho/hA, in which the latter is determined by the location of 
the first-order transition as 

Now, as is usual in cubic systems, the ordering of 4, will cause a (small) secondary 
change in 40, through the linear terms in $o that are in the intermediate Hamiltonian X 
referred to above (Blankschtein and Aharony 1981). Since M I  appears discontinuously 
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Figure 1. Relative discontinuity of the diagonal magnetisation with respect to its mean-field 
value as a function of MO = lM( for E = 0.1,0.3 and 1 .O,  according to equation (1 1). 

in the Potts model, for the discontinuity in the magnetisation of the cubic system in a 
diagonal field this now yields the result 

AM11 = $0 - 4 ( U o  - l ~ o / ) M o M : / f o  (9) 

(AM~//Mo)/(AM~~/Mo)o == (2.591~0 IMt) -O 3 5 E  

in which f o  = ro + 12(u0 + u 0 / 3 ) M $ .  A direct calculation using the XY-model fixed- 
point value for uo then yields the estimate for the ratio 

(10) 

with respect to the mean-field value (the limit E = 0) found by Mukamel et a1 (1976). 
Since we are dealing with a first-order transition, it is presumably unjustified to assume 
(10) to apply when E is extrapolated far from zero. Noting that luolMi is O(w2/u) ,  and 
since 0 < w'/u -=G 1, the fluctuation corrections are expected to remain finite. Also, 
because 6 = 0 for a diagonal field, except for the initial cubic anisotropy, symmetry- 
breaking perturbations play no role in (10). Note that for any reasonable temperature 
dependence of M O ,  fluctuations thus tend to decrease the discontinuity as Tis lowered. 

To estimate the effect of sixth-order anisotropy consider, for simplicity, a single term 
so(q9: + q9y6 + q:)  added to (1) in mean-field theory. Then (10) is modified to 

( A M ~ l / M o ) / ( A M ~ ~ / M o ) o  1 [l + 0.57(so/l~o/)M~](2.59/~olM*)-~.~~~ (11) 

and sixth-order anisotropy (with so > 0) should thus increase the discontinuity as T i s  
reduced, in qualitative agreement with earlier quantum-mechanical, mean-field cal- 
culations for DyA1, (Barbara et al 1978). Thus, RG fluctuation corrections that compete 
with the effect of sixth-order anisotropy could lead to a discontinuity of the same order 
as that of Mukamel et a1 (1976). This could be the case for PrA1, as illustrated in figure 
1, which represents a numerical estimate of (11) with the choice luol = 1 and so = 0.5 in 
accordance with Barbara eta1 (1978). Note that over most of the range of non-zero M O ,  
to which our calculations are restricted, there is only a change of about 10% to 20% over 
the already small (AMII/Mo),. Thus, in cubic ferromagnets when the transition is only 
weakly first order, sixth-order anisotropy and fluctuation corrections should compete 
without changing the nature of the transition. In contrast, the low-Texperimental results 
on DyA1, may be an indication that quantum-mechanical effects force the transition to 
be entirely first order, with negligible fluctuation corrections. 
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Before our final comment about the nature of the phase transition in the three-state 
Potts model, consider the effect of RG fluctuation corrections on the critical and tricritical 
points in non-zero field h l ,  i.e., for 6 # 0 corresponding to a non-diagonal magnetic 
field. Using the results of our previous work (Barbosa and Theumann 1988) we find, for 
the critical and tricritical angles 

e,/e$O) = (1.434 I u , , J M ; )  -0.13€ (12) 

et/e{O) = (1.437 I U ~ I M ; ) - O . ~ ~ ~  . (13) 
respectively. Here quadratic and quartic symmetry-breaking terms were included in the 
calculation of the exponents to ensure that no cancellation takes place. Thus, fluctuation 
corrections impose the same tendency on the angles as on the discontinuity in the 
magnetisation. With sixth-order anisotropy taken into account, equations (12) and (13) 
become modified in a way similar to ( l l ) ,  in agreement with Cullen and Callen (1984, 
1985). 

Returning to the nature of the phase transition for the three-state Potts model in 
three dimensions, the consistency of our results with the experiments on PrAl, and 
DyAl, (at not-too-low Z') suggests that the transition in the classical model is weakly first 
order. Further experiments and quantum-mechanical calculations are necessary for 
DyA1, at rather low Tto  confirm and explain the apparently large first-order transition. 
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